资源类型

期刊论文 572

会议视频 6

年份

2024 2

2023 26

2022 42

2021 63

2020 27

2019 34

2018 34

2017 29

2016 32

2015 24

2014 28

2013 24

2012 21

2011 27

2010 25

2009 31

2008 34

2007 40

2006 9

2005 4

展开 ︾

关键词

个人热管理 2

协同效应 2

卫星 2

引种工程 2

惰性粒子 2

数值模拟 2

有限元 2

核能 2

残余应力 2

绿色化工 2

3-DR-IUD 1

3D支架平台 1

Anderson 模型 1

CO2 加氢 1

China TIMES模型 1

DX桩 1

Fe、Co、Ru 碳化物 1

Fluent 1

IHNI-1反应堆;热工水力;子通道;安全分析 1

展开 ︾

检索范围:

排序: 展示方式:

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 496-506 doi: 10.1007/s11708-010-0020-2

摘要: A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

关键词: convective transport     heat transfer     mass transfer     laminar flow     thermal boundary effects    

Effects of hemin and thermal stress exposure on JWA expression

ZHAO Ming, CHEN Rui, LI Aiping, ZHOU Jianwei

《医学前沿(英文)》 2007年 第1卷 第1期   页码 104-108 doi: 10.1007/s11684-007-0020-8

摘要: To investigate the expression of JWA after hemin and (or) thermal stress exposure, we treated K562 (chronic myelogenous leukemia cells) cells with different doses of hemin and thermal stress using different exposure times. The expression of JWA protein was determined by Western blot analysis. Reverse transcription-polymerase chain reaction was carried out to determine JWA mRNA expression. JWA promoter transcription activity analysis was performed by chloramphenicol acetyl transferase-enzyme linked immunosorbent assay (CAT-ELISA). The expression of JWA protein was significantly increased by up to (3.23±0.57) folds compared to the control in K562 cells after hemin treatment (50 µM for one week), and a similar pattern was observed in the cells after treatment with thermal stress (42 °C) for 2 hours [increased by (8.00±1.73) folds]. The expression of JWA mRNA was also significantly elevated by up to (1.37±0.06) folds in K562 cells treated with hemin (30 µM for 48 hours), and a similar regulatory pattern [increased by (1.87±0.13) folds] was observed with thermal stress exposure (42 °C) for 30 minutes. However, a combined antagonistic effect was observed in the treatment of K562 cells with hemin (30 µM, 48 h) followed by thermal stress (42 °C, 30 min). CAT-ELISA further confirmed that either hemin or thermal stress treatment could up-regulate JWA transcription activity, however, the effects could be counteracted partly by treatment with a combination of both. Hemin and thermal stress might regulate JWA expression via distinct intracellular signal transduction pathways.

energy distribution of modulated multi-pulse injection modes based diesel HCCI combustion and their effectson engine thermal efficiency and emissions

LIU Bin, SU Wanhua, WANG Hui, HUANG Haozhong

《能源前沿(英文)》 2007年 第1卷 第4期   页码 420-427 doi: 10.1007/s11708-007-0061-7

摘要: Cycle fuel energy distribution and combustion characteristics of early in-cylinder diesel homogenous charge compression ignition (HCCI) combustion organized by modulated multi-pulse injection modes are studied by the engine test.

关键词: combustion     compression     homogenous     in-cylinder     modulated multi-pulse    

Effects of thermocline on performance of underwater glider’s power system propelled by ocean thermal

Hai YANG, Jie MA,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 472-479 doi: 10.1007/s11708-009-0052-7

摘要: The thermal glider’s changeable volume produces propelling force to power the glider’s descending and ascending through the thermocline. The different depth, thickness, and intensity of the thermocline at different seasons and locations affect the working processes of the glider’s power system. Based on the enthalpy method, a mathematical model of the underwater glider’s power system was established and the time efficiency of operation was introduced, so that the effects of different thermoclines on the underwater glider’s power system were analyzed theoretically. The simulation result shows that the thermocline affects the transition time of the phase change processes of working fluids within the thermal engine tubes. There exist the threshold values of the thermocline’s depth and upper thickness for the power system’s operation. A depth or upper thickness of the thermocline less than the corresponding threshold leads the power system to work abnormally. To keep the power system working efficiently, a glider must be kept in warm surface water for a certain period before it moves through cold water, so that the time efficiency of operation is reduced. A less time efficiency of operation is unfavorable to the thermal glider to penetrate through the ocean currents.

关键词: mathematical     underwater glider     system working     certain     corresponding threshold    

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 495-503 doi: 10.1007/s11709-018-0492-4

摘要: Phagraphene is a very attractive two-dimensional (2D) full carbon allotrope with very interesting mechanical, electronic, optical, and thermal properties. The objective of this study is to investigate the mechanical properties of this new graphene like 2D material. In this work, mechanical properties of phagraphene have been studied not only in the defect-free form, but also with the critical defect of line cracks, using the classical molecular dynamics simulations. Our study shows that the pristine phagraphene in zigzag direction experience a ductile behavior under uniaxial tensile loading and the nanosheet in this direction are less sensitive to temperature changes as compared to the armchair direction. We studied different crack lengths to explore the influence of defects on the mechanical properties of phagraphene. We also investigated the temperature effect on the mechanical properties of pristine and defective phagraphene. Our classical atomistic simulation results confirm that larger cracks can reduce the strength of the phagraphene. Moreover, it was shown the temperature has a considerable weakening effect on the tensile strength of phagraphene. The results of this study may be useful for the design of nano-devices using the phagraphene.

关键词: phaqraphene     mechanical properties     crack propaqation     molecular dynamics     thermal effects    

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 563-570 doi: 10.1007/s11465-018-0487-9

摘要:

The thermal hydraulic (TH) behavior of coo-lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

关键词: structural integrity     reactor pressure vessel     pressurized thermal shock     thermal hydraulic analysis     pressurized water reactor     weld residual stress    

Assessment indices for uniform and non-uniform thermal environments

ZHANG Yufeng, SUN Shufeng, ZHAO Rongyi

《能源前沿(英文)》 2008年 第2卷 第2期   页码 129-133 doi: 10.1007/s11708-008-0029-y

摘要: Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments. 30 subjects reported their overall thermal sensation, thermal comfort, and thermal acceptability in uniform and non-uniform conditions. The results show that these three assessment indices provide equivalent evaluations in uniform environments. However, overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments. The relationship between the percentage and the mean vote for each index is established.

关键词: thermal sensation     proper assessment     relationship     equivalent     thermal acceptability    

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

《能源前沿(英文)》 2021年 第15卷 第4期   页码 842-853 doi: 10.1007/s11708-021-0743-2

摘要: A significant role for a future nuclear carbon-free energy production is attributed to fast reactors, mostly employing a liquid metal as a coolant. This paper summarizes the efforts that have been undertaken in collaborative projects sponsored by the European Commission in the past 20 years in the fields of liquid-metal heat transfer modeling, fuel assembly and core thermal hydraulics, pool and system thermal hydraulics, and establishment of best practice guidelines and verification, validation, and uncertainty quantification (UQ). The achievements in these fields will be presented along with the prospects on topics which will be studied collaboratively in Europe in the years to come. These prospects include further development of heat transfer models for applied computational fluid dynamics (CFD), further analysis of the consequences of fuel assembly blockages on coolant flow and temperature, analysis of the thermal hydraulic effects in deformed fuel assemblies, extended validation of three-dimensional pool thermal hydraulic CFD models, and further development and validation of multi-scale system thermal hydraulic methods.

关键词: liquid metal     thermal hydraulics     Europe    

Coupling evaluation for material removal and thermal control on precision milling machine tools

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 12-12 doi: 10.1007/s11465-021-0668-9

摘要: Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

关键词: machine tools     cutting energy efficiency     thermal stability     machining accuracy     coupling evaluation    

An autonomous system for thermal convection of viscoelastic fluids in a porous layer using a thermal

Qi WEI, Xiaohui ZHANG

《能源前沿(英文)》 2010年 第4卷 第4期   页码 507-516 doi: 10.1007/s11708-010-0017-x

摘要: Thermal convection of viscoelastic fluids saturating a horizontal porous layer heated from below is analyzed using a thermal nonequilibrium model to take account of the interphase heat transfer between the fluid and the solid. The viscoelastic character of the flow is considered by a modified Darcy’s law. An autonomous system with five differential equations is deduced by applying the truncated Galerkin expansion to the momentum and heat transfer equations. The effects of interphase heat transfer on the thermal convection of viscoelastic fluids in a porous medium are analyzed and discussed. The results show that the weak interphase heat transfer tends to stabilize the steady convection.

关键词: thermal convection     porous media     viscoelastic fluid     thermal nonequilibrium model    

ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal

Yaolin LIN, Wei YANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 550-563 doi: 10.1007/s11708-019-0607-1

摘要: With increasing awareness of sustainability, demands on optimized design of building shapes with a view to maximize its thermal performance have become stronger. Current research focuses more on building envelopes than shapes, and thermal comfort of building occupants has not been considered in maximizing thermal performance in building shape optimization. This paper attempts to develop an innovative ANN (artificial neural network)-exhaustive-listing method to optimize the building shapes and envelope physical properties in achieving maximum thermal performance as measured by both thermal load and comfort hour. After verified, the developed method is applied to four different building shapes in five different climate zones in China. It is found that the building shape needs to be treated separately to achieve sufficient accuracy of prediction of thermal performance and that the ANN is an accurate technique to develop models of discomfort hour with errors of less than 1.5%. It is also found that the optimal solutions favor the smallest window-to-external surface area with triple-layer low-E windows and insulation thickness of greater than 90 mm. The merit of the developed method is that it can rapidly reach the optimal solutions for most types of building shapes with more than two objective functions and large number of design variables.

关键词: ANN (artificial neural network)     exhaustive-listing     building shape     optimization     thermal load     thermal comfort    

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

《能源前沿(英文)》   页码 796-810 doi: 10.1007/s11708-023-0877-5

摘要: Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h2 < 0, h2 is the height of expanded channel for E-MCHS) and when over plate was raised (h2 > 0).

关键词: liquid metal cooling     heat sink     expanded microchannel     flow and thermal modeling    

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1038-1050 doi: 10.1007/s11705-022-2279-3

摘要: Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

关键词: cellulose     polyelectrolytes     phase change materials     thermal energy storage     light-to-thermal conversion    

Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 475-483 doi: 10.1007/s11705-021-2070-x

摘要: Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physicochemical properties and promoting follow-up applications. In this study, non-thermal plasma was applied for biochar surface carving before being used in contaminant removal and energy storage applications. The results showed that even a low dose of plasma exposure could introduce a high number density of oxygen-functional groups and enhance the hydrophilicity and metal affinity of the pristine biochar. The plasma-treated biochar enabled a faster metal-adsorption rate and a 40% higher maximum adsorption capacity of heavy metal ion Pb2+. Moreover, to add more functionality to biochar surface, biochar with and without plasma pre-treatment was activated by KOH at a temperature of 800 °C. Using the same amount of KOH, the plasma treatment resulted in an activated carbon product with the larger BET surface area and pore volume. The performance of the treated activated carbon as a supercapacitor electrode was also substantially improved by>30%. This study may provide guidelines for enhancing the surface functionality and application performances of biochar using non-thermal-based techniques.

关键词: non-thermal plasma     surface functionalization     biochar modification     wastewater treatment     supercapacitor    

标题 作者 时间 类型 操作

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

期刊论文

Effects of hemin and thermal stress exposure on JWA expression

ZHAO Ming, CHEN Rui, LI Aiping, ZHOU Jianwei

期刊论文

energy distribution of modulated multi-pulse injection modes based diesel HCCI combustion and their effectson engine thermal efficiency and emissions

LIU Bin, SU Wanhua, WANG Hui, HUANG Haozhong

期刊论文

Effects of thermocline on performance of underwater glider’s power system propelled by ocean thermal

Hai YANG, Jie MA,

期刊论文

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

期刊论文

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

期刊论文

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

期刊论文

Assessment indices for uniform and non-uniform thermal environments

ZHANG Yufeng, SUN Shufeng, ZHAO Rongyi

期刊论文

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

期刊论文

Coupling evaluation for material removal and thermal control on precision milling machine tools

期刊论文

An autonomous system for thermal convection of viscoelastic fluids in a porous layer using a thermal

Qi WEI, Xiaohui ZHANG

期刊论文

ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal

Yaolin LIN, Wei YANG

期刊论文

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

期刊论文

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

期刊论文

Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications

期刊论文